
Avi Ansible Integration Documentation
Release 17.1.0

Avi Networks

Apr 25, 2020

Contents

1 Avi Controller Role 1

2 Avi SE Role 13

3 Avi Docker Role 23

4 Avi Network Interfaces Role 25

5 Avi Ansible Modules 27

i

ii

CHAPTER 1

Avi Controller Role

To help automate the deployment of Avi Vantage Controller in your environment we’ve developed an Ansible Role
which can deploy in many environemnts. This includes deploying from Docker Hub, Private Docker Repo, Docker
compressed images (tgz), as well as some cloud environments including CSP deployment.

1.1 Prerequisites

To get started you will need the following:

• Ansible 2.2 or higher

• Server or Cloud to install Avi Controller on (Baremetal, CSP, etc.)

1.2 Parameters

Ansible Role can take parameters, these parameters can determine where and how Ansible will execute the installation
and configuration of the Avi Vantage Controller.

Due to the fast pace of features and parameters that get added we will not include them here directly, but they can be
accessed in two places. In our public GitHub repository (https://github.com/avinetworks/ansible-role-avicontroller)
or in the Ansible Galaxy (https://galaxy.ansible.com/avinetworks/avicontroller/). The readme includes all possible
parameters.

1.3 Deploying Avi Controller

1.3.1 Bare-metal Avi Deployment

Below are the current methods of deployment supported by this role to deploy the Avi Controller. Please select from
the options below to learn how to deploy using each configuration.

1

https://github.com/avinetworks/ansible-role-avicontroller
https://galaxy.ansible.com/avinetworks/avicontroller/

Avi Ansible Integration Documentation, Release 17.1.0

Using Docker Hub

Deploying Avi Controller from the Docker Hub is the default action. However it does require the server to have
internet access to Docker Hub as it will download the image.

Steps

1. Install the Avi Controller role on the host you are executing from.

sudo ansible-galaxy -f avinetworks.avicontroller

2. Identify how we want to define our hosts. Ansible can accept hosts three ways: command-line, by inventory file,
or by dynamic inventory file. We will use an inventory in this case. Ansible by default uses /etc/ansible/hosts as
it’s default inventory. Lets add this segment to the bottom of the page.

[avicontrollers]
10.120.202.24

Replace the IP with the IP of your baremetal host you want to deploy to.

3. Create the playbook. It should look similar to this.

Note: You can use con_version to specify which Avi release you’d like to use. By default it uses
whatever version referenced in the README.md file, and the version of the Role.

myplaybook.yml

- hosts: avicontrollers
become: true
roles:
- role: avinetworks.avicontroller

con_controller_ip: 10.120.202.24
con_cores: 4
con_memory_gb: 16

However, there are are many possible values which can be found on the roles README file (https:
//github.com/avinetworks/ansible-role-avicontroller). Each one allows customization of the deployment.

In this playbook we are specifying that this “play” should apply to the “avicontrollers” hosts. Which we
have previously defined in the inventory file. We are also specifying that the controllers IP is 10.10.27.101,
this is used to properly determine the interface that the controller will use. We are then specifying the core
count that the controller will use. This is the amount of cores that docker will be permitted to use for the
controller. Then we specify the amount of memory in GB that the controller will be permitted to use. We
recommend using 16GB or more.

4. Verify your local user has access to the hosts you are deploying the controller to. You will need sudo access as
well. Login using your current user to make sure you can login. Make sure to logout when done to execute your
playbook from your hose.

ssh 10.120.202.24

5. Execute the playbook.

Note:

2 Chapter 1. Avi Controller Role

https://github.com/avinetworks/ansible-role-avicontroller
https://github.com/avinetworks/ansible-role-avicontroller

Avi Ansible Integration Documentation, Release 17.1.0

• If you are not using an SSH key you will also need to specify --ask-pass to Ansible.

• If your current user is different you will need to specify -u <username> to Ansible.

ansible-playbook myplaybook.yml -u <username> --ask-pass

Using a Private Docker Repository

Steps

1. Install the Avi Controller role on the host you are executing from.

sudo ansible-galaxy -f avinetworks.avicontroller

2. Identify how we want to define our hosts. Ansible can accept hosts three ways: command-line, by inventory file,
or by dynamic inventory file. We will use an inventory in this case. Ansible by default uses /etc/ansible/hosts as
it’s default inventory. Lets add this segment to the bottom of the page.

[avicontrollers]
10.120.202.24

Replace the IP with the IP of your baremetal host you want to deploy to.

3. Create the playbook. It should look similar to this

myplaybook.yml

- hosts: avicontrollers
become: true
roles:
- role: avinetworks.avicontroller

con_docker_repo: mydockerrepo.company.com
con_version: 16.3.9-23923929323923
con_docker_repo_user: admin
con_docker_repo_password: adminpassword
con_controller_ip: 10.120.202.24
con_cores: 4
con_memory_gb: 16

However, there are are many possible values which can be found on the roles README file (https:
//github.com/avinetworks/ansible-role-avicontroller). Each one allows customization of the deployment.

In this playbook we are specifying that this “play” should apply to the “avicontrollers” hosts. Which we
have previously defined in the inventory file. We are also specifying that the controllers IP is 10.10.27.101,
this is used to properly determine the interface that the controller will use. We are then specifying the core
count that the controller will use. This is the amount of cores that docker will be permitted to use for the
controller. Then we specify the amount of memory in GB that the controller will be permitted to use. We
recommend using 16GB or more.

4. Verify your local user has access to the hosts you are deploying the controller to. You will need sudo access as
well. Login using your current user to make sure you can login. Make sure to logout when done to execute your
playbook from your hose.

ssh 10.120.202.24

5. Execute the playbook.

1.3. Deploying Avi Controller 3

https://github.com/avinetworks/ansible-role-avicontroller
https://github.com/avinetworks/ansible-role-avicontroller

Avi Ansible Integration Documentation, Release 17.1.0

Note:

• If you are not using an SSH key you will also need to specify --ask-pass to ansible.

• If your current user is different you will need to specify -u <username> to ansible.

ansible-playbook myplaybook.yml -u <username> --ask-pass

Using a Compressed Docker Image

Steps

1. Install the Avi Controller role on the host you are executing from.

sudo ansible-galaxy -f avinetworks.avicontroller

2. Identify how we want to define our hosts. Ansible can accept hosts three ways: command-line, by inventory file,
or by dynamic inventory file. We will use an inventory in this case. Ansible by default uses /etc/ansible/hosts as
it’s default inventory. Lets add this segment to the bottom of the page.

[avicontrollers]
10.120.202.24

Replace the IP with the IP of your baremetal host you want to deploy to.

3. Create the playbook. It should look similar to this

myplaybook.yml

- hosts: avicontrollers
become: true
roles:
- role: avinetworks.avicontroller

con_package_deploy: true
con_package_source: /home/user/Downloads/controller_docker.tgz
con_controller_ip: 10.120.202.24
con_cores: 4
con_memory_gb: 16

However, there are are many possible values which can be found on the roles README file (https:
//github.com/avinetworks/ansible-role-avicontroller). Each one allows customization of the deployment.

In this playbook we are specifying that this “play” should apply to the “avicontrollers” hosts. Which we
have previously defined in the inventory file. We are also specifying that the controllers IP is 10.10.27.101,
this is used to properly determine the interface that the controller will use. We are then specifying the core
count that the controller will use. This is the amount of cores that docker will be permitted to use for
the controller. Then we specify the amount of memory in GB that the controller will be permitted to use.
We recommend using 16GB or more. We also needed to specify that we want to deploy from package
via con_package_deploy: true which tells the role we’re deploying from package. Then we
provided the location of the package file by providing the con_package_source parameter.

4. Verify your local user has access to the hosts you are deploying the controller to. You will need sudo access as
well. Login using your current user to make sure you can login. Make sure to logout when done to execute your
playbook from your hose.

4 Chapter 1. Avi Controller Role

https://github.com/avinetworks/ansible-role-avicontroller
https://github.com/avinetworks/ansible-role-avicontroller

Avi Ansible Integration Documentation, Release 17.1.0

ssh 10.120.202.24

5. Execute the playbook.

Note:

• If you are not using an SSH key you will also need to specify --ask-pass to ansible.

• If your current user is different you will need to specify -u <username> to ansible.

ansible-playbook myplaybook.yml -u <username> --ask-pass

Requirements

• CentOS/RHEL/OracleLinux 7.x

• Ubuntu 14.04 or higher

• Docker 1.12 or higher

Preparing Your Host

Prior to delpoying this role on your servers you may want to also configure the server for your environment. Some
tasks you may want to include:

• configure network interfaces

• install Docker, either with another role, or manually from the Docker website

• turn off built-in firewalls (firewalld, ufw, etc.)

• turn off yum-cron if you’re using CentOS, Oracle, or RedHat Linux

• subscribe your RedHat host to the Red Hat Subscription Manager

• deploying users, ssh-keys, etc.

• registering the host with another internal tool for tracking or monitoring

There are tons of things I am sure not listed that you may think of, but should be included in preparing a host for
deploying the Controller to a baremetal host.

We also want to make sure you don’t have multiple items trying to manage this server at the same time. If you must
then make sure all entities managing the server aren’t managing the same components. You could end up with a
conflict where one tool is telling the server to meet one spec, and another is changing it back, and then you have both
tools changing each others actions back. (Not good for consistency)

1.3.2 Cisco CSP Avi Deployment

Requirements

• You will need to have available memory and storage for both the image, and the service on your Cisco CSP
device.

1.3. Deploying Avi Controller 5

Avi Ansible Integration Documentation, Release 17.1.0

Using QCOW image

Steps

1. Install the Avi Controller role on the host you are executing from.

sudo ansible-galaxy install -f avinetworks.avicontroller-csp

2. Identify how we want to define our hosts. Ansible can accept hosts three ways: command-line, by inventory file,
or by dynamic inventory file. We will use an inventory in this case. Ansible by default uses /etc/ansible/hosts as
it’s default inventory. Lets add this segment to the bottom of the page.

[csp_devices]
10.120.222.56

Replace the IP with the IP of your CSP host you want to deploy to.

3. Make sure you are able to SSH into the CSP device. To verify login, then logout.

ssh user@10.120.222.56

4. Create the playbook. It should look similar to this

myplaybook.yml

- hosts: csp_devices
gather_facts: false
roles:

- role: avinetworks.avicontroller
con_deploy_type: csp
con_csp_user: admin
con_csp_password: password
con_csp_qcow_image_file: avi-controller.qcow2
con_csp_mgmt_ip: 10.128.2.20
con_csp_mgmt_mask: 255.255.255.0
con_csp_default_gw: 10.128.2.1
con_csp_service_name: avi-controller
con_csp_num_cpu: 4
con_csp_memory_gb: 16

con_deploy_type: Sets the type of deployment that should be triggered.

con_csp_user: Username that will be used to connect to the CSP server

con_csp_password: Password required to authenticate the user

con_csp_qcow_image_file: is the relative, or absolute location of the qcow file that will be uploaded to
the CSP device.

con_csp_mgmt_ip: IP of the controller on the management network.

con_csp_mgmt_mask: Subnet mask that the controller will require.

con_csp_default_gw: Default gateway for the controller

con_csp_service_name: Name of the service to be created on the CSP

con_csp_num_cpu: Number of CPUs to be allocated to the Controller

con_csp_memory_gb: Amount of memory in GB allocated to the Controller

6 Chapter 1. Avi Controller Role

Avi Ansible Integration Documentation, Release 17.1.0

Note: There are are many possible values which can be found on the roles README file (https://github.
com/avinetworks/ansible-role-avicontroller). Each one allows customization of the deployment.

In this playbook we are specifying that this “play” should apply to the “csp_devices” hosts. Anything not
required mentioned here CSP Deployment Variables can be omitted from your role parameters. Defaults
are also noted on that document.

5. Execute the playbook.

Note:

• If you are not using an ssh-key you will also need to specify –ask-pass to ansible.

• If your current user is different you will need to specify -u <username> to ansible.

ansible-playbook myplaybook.yml -u <username> --ask-pass

1.3.3 OpenShift Avi Deployment

Using Docker Hub

Deploying Avi Controller from the Docker Hub is the default action. However it does require the server to have
internet access to Docker Hub as it will download the image.

Steps

1. Install the Avi Controller role on the host you are executing from.

sudo ansible-galaxy -f avinetworks.avicontroller

2. Identify how we want to define our hosts. Ansible can accept hosts three ways: command-line, by inventory file,
or by dynamic inventory file. We will use an inventory in this case. Ansible by default uses /etc/ansible/hosts as
it’s default inventory. Lets add this segment to the bottom of the page.

[avicontrollers]
10.120.202.24

Replace the IP with the IP of your baremetal host you want to deploy to.

3. Create the playbook. It should look similar to this

myplaybook.yml

- hosts: avicontrollers
become: true
roles:
- role: avinetworks.avicontroller

con_controller_ip: 10.120.202.24
con_deploy_type: openshift
con_cores: 4
con_memory_gb: 16

1.3. Deploying Avi Controller 7

https://github.com/avinetworks/ansible-role-avicontroller
https://github.com/avinetworks/ansible-role-avicontroller
https://github.com/avinetworks/ansible-role-avicontroller#csp-deployment-variables

Avi Ansible Integration Documentation, Release 17.1.0

However, there are are many possible values which can be found on the roles README file (https:
//github.com/avinetworks/ansible-role-avicontroller). Each one allows customization of the deployment.

In this playbook we are specifying that this “play” should apply to the “avicontrollers” hosts. Which we
have previously defined in the inventory file. We are also specifying that the controllers IP is 10.10.27.101,
this is used to properly determine the interface that the controller will use. We are then specifying the core
count that the controller will use. This is the amount of cores that docker will be permitted to use for the
controller. Then we specify the amount of memory in GB that the controller will be permitted to use. We
recommend using 16GB or more.

4. Verify your local user has access to the hosts you are deploying the controller to. You will need sudo access as
well. Login using your current user to make sure you can login. Make sure to logout when done to execute your
playbook from your hose.

ssh 10.120.202.24

5. Execute the playbook.

Note:

• If you are not using an ssh-key you will also need to specify –ask-pass to ansible.

• If your current user is different you will need to specify -u <username> to ansible.

ansible-playbook myplaybook.yml -u <username> --ask-pass

Using a Private Docker Repository

Requirements

• CentOS/RHEL/OracleLinux 7.x

• Ubuntu 14.04 or higher

• Docker 1.12 or higher

Steps

1. Install the Avi Controller role on the host you are executing from.

sudo ansible-galaxy -f avinetworks.avicontroller

2. Identify how we want to define our hosts. Ansible can accept hosts three ways: command-line, by inventory file,
or by dynamic inventory file. We will use an inventory in this case. Ansible by default uses /etc/ansible/hosts as
it’s default inventory. Lets add this segment to the bottom of the page.

[avicontrollers]
10.120.202.24

Replace the IP with the IP of your baremetal host you want to deploy to.

3. Create the playbook. It should look similar to this

8 Chapter 1. Avi Controller Role

https://github.com/avinetworks/ansible-role-avicontroller
https://github.com/avinetworks/ansible-role-avicontroller

Avi Ansible Integration Documentation, Release 17.1.0

myplaybook.yml

- hosts: avicontrollers
become: true
roles:
- role: avinetworks.avicontroller

con_docker_repo: mydockerrepo.company.com
con_version: 16.3.9-23923929323923
con_docker_repo_user: admin
con_docker_repo_password: adminpassword
con_controller_ip: 10.120.202.24
con_cores: 4
con_memory_gb: 16

However, there are are many possible values which can be found on the roles README file (https:
//github.com/avinetworks/ansible-role-avicontroller). Each one allows customization of the deployment.

In this playbook we are specifying that this “play” should apply to the “avicontrollers” hosts. Which we
have previously defined in the inventory file. We are also specifying that the controllers IP is 10.10.27.101,
this is used to properly determine the interface that the controller will use. We are then specifying the core
count that the controller will use. This is the amount of cores that docker will be permitted to use for the
controller. Then we specify the amount of memory in GB that the controller will be permitted to use. We
recommend using 16GB or more.

4. Verify your local user has access to the hosts you are deploying the controller to. You will need sudo access as
well. Login using your current user to make sure you can login. Make sure to logout when done to execute your
playbook from your hose.

ssh 10.120.202.24

5. Execute the playbook.

Note:

• If you are not using an ssh-key you will also need to specify –ask-pass to ansible.

• If your current user is different you will need to specify -u <username> to ansible.

ansible-playbook myplaybook.yml -u <username> --ask-pass

Using a Compressed Docker Image

Requirements

• CentOS/RHEL/OracleLinux 7.x

• Ubuntu 14.04 or higher

• Docker 1.12 or higher

Steps

1. Install the Avi Controller role on the host you are executing from.

1.3. Deploying Avi Controller 9

https://github.com/avinetworks/ansible-role-avicontroller
https://github.com/avinetworks/ansible-role-avicontroller

Avi Ansible Integration Documentation, Release 17.1.0

sudo ansible-galaxy -f avinetworks.avicontroller

2. Identify how we want to define our hosts. Ansible can accept hosts three ways: command-line, by inventory file,
or by dynamic inventory file. We will use an inventory in this case. Ansible by default uses /etc/ansible/hosts as
it’s default inventory. Lets add this segment to the bottom of the page.

[avicontrollers]
10.120.202.24

Replace the IP with the IP of your baremetal host you want to deploy to.

3. Create the playbook. It should look similar to this

myplaybook.yml

- hosts: avicontrollers
become: true
roles:
- role: avinetworks.avicontroller

con_package_deploy: true
con_package_source: /home/user/Downloads/controller_docker.tgz
con_controller_ip: 10.120.202.24
con_cores: 4
con_memory_gb: 16

However, there are are many possible values which can be found on the roles README file (https:
//github.com/avinetworks/ansible-role-avicontroller). Each one allows customization of the deployment.

In this playbook we are specifying that this “play” should apply to the “avicontrollers” hosts. Which we
have previously defined in the inventory file. We are also specifying that the controllers IP is 10.10.27.101,
this is used to properly determine the interface that the controller will use. We are then specifying the core
count that the controller will use. This is the amount of cores that docker will be permitted to use for
the controller. Then we specify the amount of memory in GB that the controller will be permitted to use.
We recommend using 16GB or more. We also needed to specify that we want to deploy from package
via con_package_deploy: true which tells the role we’re deploying from package. Then we
provided the location of the package file by providing the con_package_source parameter.

4. Verify your local user has access to the hosts you are deploying the controller to. You will need sudo access as
well. Login using your current user to make sure you can login. Make sure to logout when done to execute your
playbook from your hose.

ssh 10.120.202.24

5. Execute the playbook.

Note:

• If you are not using an ssh-key you will also need to specify –ask-pass to ansible.

• If your current user is different you will need to specify -u <username> to ansible.

ansible-playbook myplaybook.yml -u <username> --ask-pass

Requirements

• CentOS/RHEL/OracleLinux 7.x

10 Chapter 1. Avi Controller Role

https://github.com/avinetworks/ansible-role-avicontroller
https://github.com/avinetworks/ansible-role-avicontroller

Avi Ansible Integration Documentation, Release 17.1.0

• Ubuntu 14.04 or higher

• Docker 1.12 or higher

The main components of the Avi Vantage solution, Avi Controllers and Service Engines (SEs), run as containers on
OpenShift/Kubernetes minion nodes. For production deployment, a 3-instance Avi Controller cluster is recommended,
with the each of the Avi Controller instances running in containers on separate physical nodes. After configuring the
Avi Controller cluster for OpensShift/Kubernetes cloud, it deploys one Avi SE container on OpenShift/Kubernetes
nodes.

• The system time on all nodes must be synchronized. Use of a Network Time Protocol (NTP) server is recom-
mended.

• The Avi Controller uses password-less sudo SSH to access all the OpenShift nodes in the cluster and create
SEs on those nodes. The SSH user must have password-less sudo access to all three OpenShift nodes host-
ing the Avi Vantage cluster. The SSH method requires a public-private key pair. You can import an existing
private key onto the Avi Controller or generate a new key pair. In either case, the public key must be in the
“/home/ssh_user/.ssh/authorized_keys” file, where ssh_user is the SSH username on all OpenShift nodes. The
Avi Controller setup wizard automatically stores the private key on the Avi Controller node when you import or
generate the key.

1.3.4 AWS Avi Deployment

1.3.5 OpenStack Avi Deployment

1.3. Deploying Avi Controller 11

Avi Ansible Integration Documentation, Release 17.1.0

12 Chapter 1. Avi Controller Role

CHAPTER 2

Avi SE Role

To help automate the deployment of Avi Vantage Service Engine in your environment we’ve developed an Ansible
Role which can deploy in many environemnts. This includes deploying from Docker Hub, Private Docker Repo,
Docker compressed images (tgz), as well as some cloud environments including CSP deployment.

2.1 Prerequisites

To get started you will need the following:

• Ansible 2.2 or higher

• Server or Cloud to install Avi Controller on (Baremetal, CSP, etc.)

• Pre-existing Avi Controller

2.2 Parameters

Ansible Role can take parameters, these parameters can determine where and how Ansible will execute the installation
and configuration of the Avi Vantage Service Engine.

Due to the fast pace of features and parameters that get added we will not include them here directly, but they can be
accessed in two places. In our public GitHub repository (https://github.com/avinetworks/ansible-role-avise) or in the
Ansible Galaxy (https://galaxy.ansible.com/avinetworks/avise/). The readme includes all possible parameters.

2.3 Deploying Avi SE

2.3.1 Bare-metal Avi Deployment

Below are the current methods of deployment supported by this role to deploy the Avi SE. Please select from the
options below to learn how to deploy using each configuration.

13

https://github.com/avinetworks/ansible-role-avise
https://galaxy.ansible.com/avinetworks/avise/

Avi Ansible Integration Documentation, Release 17.1.0

Using Docker Hub

Deploying Avi SE from the Docker Hub is the default action. However it does require the server to have internet
access to Docker Hub as it will download the image.

Steps

1. Install the Avi SE role on the host you are executing from.

sudo ansible-galaxy -f avinetworks.avise

2. Identify how we want to define our hosts. Ansible can accept hosts three ways: command-line, by inventory file,
or by dynamic inventory file. We will use an inventory in this case. Ansible by default uses /etc/ansible/hosts as
it’s default inventory. Lets add this segment to the bottom of the page.

[service_engines]
10.120.202.56

Replace the IP with the IP of your baremetal host you want to deploy to.

3. Create the playbook. It should look similar to this

myplaybook.yml

- hosts: service_engines
become: true
roles:
- role: avinetworks.avise

se_master_ctl_ip: 10.120.202.24
se_master_ctl_username: admin
se_master_ctl_password: avi123
se_disk_gb: 60
se_cores: 2
se_memory_gb: 4

However, there are are many possible values which can be found on the roles README file (https:
//github.com/avinetworks/ansible-role-avise). Each one allows customization of the deployment.

We will automatically use the se_master_ctl_ip, se_master_ctl_username, and
se_master_ctl_password to authenticate, and autoregister the service engine to the controllers
default cloud. To choose which cloud you want please use the se_cloud_name value. If you use
multiple tenants please use se_tenant to choose the specific tenant the cloud is under.

4. Verify your local user has access to the hosts you are deploying the controller to. You will need sudo access as
well. Login using your current user to make sure you can login. Make sure to logout when done to execute your
playbook from your hose.

ssh 10.120.202.56

5. Execute the playbook.

Note:

• If you are not using an ssh-key you will also need to specify –ask-pass to ansible.

• If your current user is different you will need to specify -u <username> to ansible.

14 Chapter 2. Avi SE Role

https://github.com/avinetworks/ansible-role-avise
https://github.com/avinetworks/ansible-role-avise

Avi Ansible Integration Documentation, Release 17.1.0

ansible-playbook myplaybook.yml -u <username> --ask-pass

Using a Private Docker Repository

Steps

1. Install the Avi SE role on the host you are executing from.

sudo ansible-galaxy -f avinetworks.avise

2. Identify how we want to define our hosts. Ansible can accept hosts three ways: command-line, by inventory file,
or by dynamic inventory file. We will use an inventory in this case. Ansible by default uses /etc/ansible/hosts as
it’s default inventory. Lets add this segment to the bottom of the page.

[service_engines]
10.120.202.56

Replace the IP with the IP of your baremetal host you want to deploy to.

3. Create the playbook. It should look similar to this

myplaybook.yml

- hosts: service_engines
become: true
roles:
- role: avinetworks.avise

se_docker_repo: mydockerrepo.company.com
se_version: 16.3.9-23923929323923
se_docker_repo_user: admin
se_docker_repo_password: adminpassword
se_master_ctl_ip: 10.120.202.24
se_master_ctl_username: admin
se_master_ctl_password: avi123
se_disk_gb: 60
se_cores: 2
se_memory_gb: 4

However, there are are many possible values which can be found on the roles README file (https:
//github.com/avinetworks/ansible-role-avise). Each one allows customization of the deployment.

We will automatically use the se_master_ctl_ip, se_master_ctl_username, and
se_master_ctl_password to authenticate, and autoregister the service engine to the controllers
default cloud. To choose which cloud you want please use the se_cloud_name value. If you use
multiple tenants please use se_tenant to choose the specific tenant the cloud is under.

4. Verify your local user has access to the hosts you are deploying the controller to. You will need sudo access as
well. Login using your current user to make sure you can login. Make sure to logout when done to execute your
playbook from your hose.

ssh 10.120.202.56

5. Execute the playbook.

Note:

2.3. Deploying Avi SE 15

https://github.com/avinetworks/ansible-role-avise
https://github.com/avinetworks/ansible-role-avise

Avi Ansible Integration Documentation, Release 17.1.0

• If you are not using an ssh-key you will also need to specify –ask-pass to ansible.

• If your current user is different you will need to specify -u <username> to ansible.

ansible-playbook myplaybook.yml -u <username> --ask-pass

Using a Compressed Docker Image

Steps

1. Install the Avi SE role on the host you are executing from.

sudo ansible-galaxy -f avinetworks.avise

2. Identify how we want to define our hosts. Ansible can accept hosts three ways: command-line, by inventory file,
or by dynamic inventory file. We will use an inventory in this case. Ansible by default uses /etc/ansible/hosts as
it’s default inventory. Lets add this segment to the bottom of the page.

[service_engines]
10.120.202.56

Replace the IP with the IP of your baremetal host you want to deploy to.

3. Create the playbook. It should look similar to this

myplaybook.yml

- hosts: service_engines
become: true
roles:
- role: avinetworks.avise

se_package_deploy: true
se_package_source: /home/user/Downloads/se_docker.tgz
se_master_ctl_ip: 10.120.202.24
se_master_ctl_username: admin
se_master_ctl_password: avi123
se_disk_gb: 60
se_cores: 2
se_memory_gb: 4

However, there are are many possible values which can be found on the roles README file (https:
//github.com/avinetworks/ansible-role-avise). Each one allows customization of the deployment.

We will automatically use the se_master_ctl_ip, se_master_ctl_username, and
se_master_ctl_password to authenticate, and autoregister the service engine to the controllers
default cloud. To choose which cloud you want please use the se_cloud_name value. If you use
multiple tenants please use se_tenant to choose the specific tenant the cloud is under.

4. Verify your local user has access to the hosts you are deploying the controller to. You will need sudo access as
well. Login using your current user to make sure you can login. Make sure to logout when done to execute your
playbook from your hose.

ssh 10.120.202.56

5. Execute the playbook.

16 Chapter 2. Avi SE Role

https://github.com/avinetworks/ansible-role-avise
https://github.com/avinetworks/ansible-role-avise

Avi Ansible Integration Documentation, Release 17.1.0

Note:

• If you are not using an ssh-key you will also need to specify –ask-pass to ansible.

• If your current user is different you will need to specify -u <username> to ansible.

ansible-playbook myplaybook.yml -u <username> --ask-pass

Requirements

• CentOS/RHEL/OracleLinux 7.x

• Ubuntu 14.04 or higher

• Docker 1.12 or higher

2.3.2 Cisco CSP Avi Deployment

Requirements

• You will need to have available memory and storage for both the image, and the service on your Cisco CSP
device.

Using QCOW image

Steps

1. Install the Avi SE role on the host you are executing from.

sudo ansible-galaxy -f avinetworks.avise

2. Identify how we want to define our hosts. Ansible can accept hosts three ways: command-line, by inventory file,
or by dynamic inventory file. We will use an inventory in this case. Ansible by default uses /etc/ansible/hosts as
it’s default inventory. Lets add this segment to the bottom of the page.

[csp_devices]
10.120.222.24

Replace the IP with the IP of your CSP host you want to deploy to.

3. Make sure you are able to SSH into the CSP device. You can logout when done.

ssh user@10.120.222.24

4. Create the playbook. It should look similar to this

myplaybook.yml

- hosts: csp_devices
gather_facts: false
roles:

- role: avinetworks.avise

(continues on next page)

2.3. Deploying Avi SE 17

Avi Ansible Integration Documentation, Release 17.1.0

(continued from previous page)

se_deploy_type: csp
se_csp_user: admin
se_csp_password: password
se_master_ctl_ip: 10.128.2.20
se_master_ctl_username: admin
se_master_ctl_password: password
se_csp_qcow_image_file: avi-se.qcow2
se_csp_mgmt_ip: 10.128.2.20
se_csp_mgmt_mask: 255.255.255.0
se_csp_default_gw: 10.128.2.1
se_csp_service_name: avi-se
se_csp_disk_size: 10
se_csp_num_cpu: 2
se_csp_memory_gb: 4
se_csp_vnics:
- nic: "0"
type: access
tagged: "false"
network_name: enp1s0f0

- nic: 1
type: passthrough
passthrough_mode: sriov
vlan: 200
network_name: enp7s0f0

- nic: 2
type: passthrough
passthrough_mode: sriov
vlan: 201
network_name: enp7s0f1

Note: There are are many possible values which can be found on the roles README file (https://github.
com/avinetworks/ansible-role-avise). Each one allows customization of the deployment.

In this playbook we are specifying that this “play” should apply to the “csp_devices” hosts. Anything not
required mentioned here CSP Deployment Variables can be omitted from your role parameters. Defaults
are also noted on that document.

5. Execute the playbook.

Note:

• If you are not using an ssh-key you will also need to specify –ask-pass to ansible.

• If your current user is different you will need to specify -u <username> to ansible.

ansible-playbook myplaybook.yml -u <username> --ask-pass

2.3.3 OpenShift Avi Deployment

18 Chapter 2. Avi SE Role

https://github.com/avinetworks/ansible-role-avise
https://github.com/avinetworks/ansible-role-avise
https://github.com/avinetworks/ansible-role-avise#csp-deployment-variables

Avi Ansible Integration Documentation, Release 17.1.0

Using Docker Hub

Deploying Avi Controller from the Docker Hub is the default action. However it does require the server to have
internet access to Docker Hub as it will download the image.

Steps

1. Install the Avi Controller role on the host you are executing from.

sudo ansible-galaxy -f avinetworks.avicontroller

2. Identify how we want to define our hosts. Ansible can accept hosts three ways: command-line, by inventory file,
or by dynamic inventory file. We will use an inventory in this case. Ansible by default uses /etc/ansible/hosts as
it’s default inventory. Lets add this segment to the bottom of the page.

[avicontrollers]
10.120.202.24

Replace the IP with the IP of your baremetal host you want to deploy to.

3. Create the playbook. It should look similar to this

myplaybook.yml

- hosts: avicontrollers
become: true
roles:
- role: avinetworks.avicontroller

con_controller_ip: 10.120.202.24
con_cores: 4
con_memory_gb: 16

However, there are are many possible values which can be found on the roles README file (https:
//github.com/avinetworks/ansible-role-avicontroller). Each one allows customization of the deployment.

In this playbook we are specifying that this “play” should apply to the “avicontrollers” hosts. Which we
have previously defined in the inventory file. We are also specifying that the controllers IP is 10.10.27.101,
this is used to properly determine the interface that the controller will use. We are then specifying the core
count that the controller will use. This is the amount of cores that docker will be permitted to use for the
controller. Then we specify the amount of memory in GB that the controller will be permitted to use. We
recommend using 16GB or more.

4. Verify your local user has access to the hosts you are deploying the controller to. You will need sudo access as
well. Login using your current user to make sure you can login. Make sure to logout when done to execute your
playbook from your hose.

ssh 10.120.202.24

5. Execute the playbook.

Note:

• If you are not using an ssh-key you will also need to specify –ask-pass to ansible.

• If your current user is different you will need to specify -u <username> to ansible.

2.3. Deploying Avi SE 19

https://github.com/avinetworks/ansible-role-avicontroller
https://github.com/avinetworks/ansible-role-avicontroller

Avi Ansible Integration Documentation, Release 17.1.0

ansible-playbook myplaybook.yml -u <username> --ask-pass

Using a Private Docker Repository

Requirements

• CentOS/RHEL/OracleLinux 7.x

• Ubuntu 14.04 or higher

• Docker 1.12 or higher

Steps

1. Install the Avi Controller role on the host you are executing from.

sudo ansible-galaxy -f avinetworks.avicontroller

2. Identify how we want to define our hosts. Ansible can accept hosts three ways: command-line, by inventory file,
or by dynamic inventory file. We will use an inventory in this case. Ansible by default uses /etc/ansible/hosts as
it’s default inventory. Lets add this segment to the bottom of the page.

[avicontrollers]
10.120.202.24

Replace the IP with the IP of your baremetal host you want to deploy to.

3. Create the playbook. It should look similar to this

myplaybook.yml

- hosts: avicontrollers
become: true
roles:
- role: avinetworks.avicontroller

con_docker_repo: mydockerrepo.company.com
con_version: 16.3.9-23923929323923
con_docker_repo_user: admin
con_docker_repo_password: adminpassword
con_controller_ip: 10.120.202.24
con_cores: 4
con_memory_gb: 16

However, there are are many possible values which can be found on the roles README file (https:
//github.com/avinetworks/ansible-role-avicontroller). Each one allows customization of the deployment.

In this playbook we are specifying that this “play” should apply to the “avicontrollers” hosts. Which we
have previously defined in the inventory file. We are also specifying that the controllers IP is 10.10.27.101,
this is used to properly determine the interface that the controller will use. We are then specifying the core
count that the controller will use. This is the amount of cores that docker will be permitted to use for the
controller. Then we specify the amount of memory in GB that the controller will be permitted to use. We
recommend using 16GB or more.

4. Verify your local user has access to the hosts you are deploying the controller to. You will need sudo access as
well. Login using your current user to make sure you can login. Make sure to logout when done to execute your
playbook from your hose.

20 Chapter 2. Avi SE Role

https://github.com/avinetworks/ansible-role-avicontroller
https://github.com/avinetworks/ansible-role-avicontroller

Avi Ansible Integration Documentation, Release 17.1.0

ssh 10.120.202.24

5. Execute the playbook.

Note:

• If you are not using an ssh-key you will also need to specify –ask-pass to ansible.

• If your current user is different you will need to specify -u <username> to ansible.

ansible-playbook myplaybook.yml -u <username> --ask-pass

Using a Compressed Docker Image

Requirements

• CentOS/RHEL/OracleLinux 7.x

• Ubuntu 14.04 or higher

• Docker 1.12 or higher

Steps

1. Install the Avi Controller role on the host you are executing from.

sudo ansible-galaxy -f avinetworks.avicontroller

2. Identify how we want to define our hosts. Ansible can accept hosts three ways: command-line, by inventory file,
or by dynamic inventory file. We will use an inventory in this case. Ansible by default uses /etc/ansible/hosts as
it’s default inventory. Lets add this segment to the bottom of the page.

[avicontrollers]
10.120.202.24

Replace the IP with the IP of your baremetal host you want to deploy to.

3. Create the playbook. It should look similar to this

myplaybook.yml

- hosts: avicontrollers
become: true
roles:
- role: avinetworks.avicontroller

con_package_deploy: true
con_package_source: /home/user/Downloads/controller_docker.tgz
con_controller_ip: 10.120.202.24
con_cores: 4
con_memory_gb: 16

However, there are are many possible values which can be found on the roles README file (https:
//github.com/avinetworks/ansible-role-avicontroller). Each one allows customization of the deployment.

2.3. Deploying Avi SE 21

https://github.com/avinetworks/ansible-role-avicontroller
https://github.com/avinetworks/ansible-role-avicontroller

Avi Ansible Integration Documentation, Release 17.1.0

In this playbook we are specifying that this “play” should apply to the “avicontrollers” hosts. Which we
have previously defined in the inventory file. We are also specifying that the controllers IP is 10.10.27.101,
this is used to properly determine the interface that the controller will use. We are then specifying the core
count that the controller will use. This is the amount of cores that docker will be permitted to use for
the controller. Then we specify the amount of memory in GB that the controller will be permitted to use.
We recommend using 16GB or more. We also needed to specify that we want to deploy from package
via con_package_deploy: true which tells the role we’re deploying from package. Then we
provided the location of the package file by providing the con_package_source parameter.

4. Verify your local user has access to the hosts you are deploying the controller to. You will need sudo access as
well. Login using your current user to make sure you can login. Make sure to logout when done to execute your
playbook from your hose.

ssh 10.120.202.24

5. Execute the playbook.

Note:

• If you are not using an ssh-key you will also need to specify –ask-pass to ansible.

• If your current user is different you will need to specify -u <username> to ansible.

ansible-playbook myplaybook.yml -u <username> --ask-pass

Requirements

• CentOS/RHEL/OracleLinux 7.x

• Ubuntu 14.04 or higher

• Docker 1.12 or higher

The main components of the Avi Vantage solution, Avi Controllers and Service Engines (SEs), run as containers on
OpenShift/Kubernetes minion nodes. For production deployment, a 3-instance Avi Controller cluster is recommended,
with the each of the Avi Controller instances running in containers on separate physical nodes. After configuring the
Avi Controller cluster for OpensShift/Kubernetes cloud, it deploys one Avi SE container on OpenShift/Kubernetes
nodes.

• The system time on all nodes must be synchronized. Use of a Network Time Protocol (NTP) server is recom-
mended.

• The Avi Controller uses password-less sudo SSH to access all the OpenShift nodes in the cluster and create
SEs on those nodes. The SSH user must have password-less sudo access to all three OpenShift nodes host-
ing the Avi Vantage cluster. The SSH method requires a public-private key pair. You can import an existing
private key onto the Avi Controller or generate a new key pair. In either case, the public key must be in the
“/home/ssh_user/.ssh/authorized_keys” file, where ssh_user is the SSH username on all OpenShift nodes. The
Avi Controller setup wizard automatically stores the private key on the Avi Controller node when you import or
generate the key.

22 Chapter 2. Avi SE Role

CHAPTER 3

Avi Docker Role

Avi’s Docker role was created to help deploy and configure the Docker service on your server. The goal was to allow
users to not only install Docker, but also configure the service itself. We allow choosing specific storage drivers, and
also have automated some of the configuration required when doing so.

Docker recently has split their project into two new projects. Community Edition (CE) and Enterprise Edition (EE).

• Docker Community Edition (CE)

• Docker Enterprise Edition (EE)

• Example Usage

3.1 Docker Community Edition (CE)

Docker CE is the free version of Docker. It containers the full Docker platform, and is great for developers and
operations teams starting to build container applications. CE uses time-based releases with a YY.MM versioning
scheme. It can be enhanced by free and paid addons from the Docker Cloud.

Docker CE comes in two different variants:

• Edge: for users wanting to get the latest and greatest features

• Stable: released quarterly for users that want an easier-to-maintain release cycle

3.2 Docker Enterprise Edition (EE)

Note: At the moment we do not currenlty support deploying this version via this role.

23

Avi Ansible Integration Documentation, Release 17.1.0

Docker EE is the supported and certified container platform. Docker and its partners provide cooperative support for
Certified Containers, and Plugins so customers can confidently use products in production.

Docker EE is available in three tiers:

• Basic: The Docker platform for certified infrastructure, with support from Docker Inc. and certified Containers
and Plugins from Docker Store

• Standard: Adds advanced image and container management, LDAP/AD user integration, and role-based access
control (Docker Datacenter)

• Advanced: Adds Docker Security Scanning and continuous vulnerability monitoring

It is available as a free trial and for purchase at Docker Store, or from the Docker Sales team. It is also supported by
many Docker partners.

3.3 Example Usage

Sample Deployment on Ubuntu

myplaybook.yml

- hosts: avicontrollers

become: true
roles:
- role: avinetworks.docker

Sample Deployment on CentOS/RedHat/Oracle

myplaybook.yml

- hosts: avicontrollers

become: true
roles:
- role: avinetworks.docker

docker_storage_driver: devicemapper
docker_block_device: /dev/sda3

24 Chapter 3. Avi Docker Role

CHAPTER 4

Avi Network Interfaces Role

Using the Avi Networks Interfaces role, you are able to automatically configure a hosts network interfaces. This
includes bridged interfaces, virtual interfaces, etc.

25

Avi Ansible Integration Documentation, Release 17.1.0

26 Chapter 4. Avi Network Interfaces Role

CHAPTER 5

Avi Ansible Modules

5.1 Modules Examples

5.1.1 Create Pool and Virtual Service

In this example we are going to create a pool, and then a vip. We use two of our Ansible modules: avi_pool and
avi_virtualservice.

The first task we create the pool using the avi_pool module. Using the name value we are able to name the
pool, then we set the enabled value to false, because at this moment we do not want to enable the pool.
health_monitor_refs field allows us to link the pools health monitor value to an already present health monitor.
Due to the structure of the API, we will need to reference the monitor by it’s API name (/api/healthmonitor?
name=System-HTTP). If the health monitor doesn’t exist and you make a reference to it, you will see an API error
on execution. So if you are creating a new health monitor, please create it in the task prior to a reference. We also
will now list our servers. These are done with the servers list, which includes a dictionary for each server. In this
example we use an IPv4 address.

Create pool, 1 VIP, and assign SSL Certificate to Pool

- hosts: localhost

connection: local
environment:

AVI_CONTROLLER: 10.10.27.90
AVI_USERNAME: admin
AVI_PASSWORD: AviNetworks123!

roles:
- role: avinetworks.avisdk

tasks:
Create the pool using the avi_pool api
- name: Create the testpool1 pool

avi_pool:
tenant: admin
name: testpool1

(continues on next page)

27

Avi Ansible Integration Documentation, Release 17.1.0

(continued from previous page)

state: present
enabled: false
health_monitor_refs:
- '/api/healthmonitor?name=System-HTTP'

servers:
- ip:

addr: 10.90.130.13
type: V4

- ip:
addr: 10.90.130.15
type: V4

...................

Next we will create the virtual service. This module will look similar to this. We of course define the name, tenant,
state, and other parameters required for the Virtual Service. We also specify the list of services to the virtual
service. We also call in the System-Standard SSL profile, the Application profile, and define the SSL key, and
certificate.

Additional values can be found in the Swagger documentation at https://<controller-
ip>/swagger/#!/default/get_virtualservice

...................
- name: Create the Virtual Service testvs1 and assign testpool1 to it

avi_virtualservice:
tenant: admin
name: testvs1
state: present
performance_limits:
max_concurrent_connections: 1000

services:
- port: 443

enable_ssl: true
- port: 80

ssl_profile_ref: '/api/sslprofile?name=System-Standard'
application_profile_ref: '/api/applicationprofile?name=System-Secure-HTTP'
ssl_key_and_certificate_refs:
- '/api/sslkeyandcertificate?name=System-Default-Cert'

ip_address:
addr: 10.90.131.105
type: V4

pool_ref: '/api/pool?name=testpool1'

5.1.2 Create Avi User

This is an example on how to work with the Avi Ansible modules to create a new user within a Tenant. You can
definitely loop with the user as well.

Note: Please be aware, this module is not idempotent because of the inability to match the password field.

Using the avi_api_session module we are able to make API calls freely to Avi. Using this we can control the
type of HTTP Method, as well as the data and path of the call.

28 Chapter 5. Avi Ansible Modules

https:/

Avi Ansible Integration Documentation, Release 17.1.0

- hosts: localhost

connection: local
environment:
AVI_CONTROLLER: ec2-34-250-111-254.eu-west-1.compute.amazonaws.com
AVI_USERNAME: admin
AVI_PASSWORD: ************

roles:
- role: avinetworks.avisdk

tasks:
- name: Check if user exists on Avi

avi_api_session:
http_method: get
path: user?name=testuser

register: user_exists

- name: Create User on Avi
avi_api_session:

http_method: post
path: user
data:
require_password_confirmation: false
is_active: true
access:

- tenant_ref: '/api/tenant?name=admin'
role_ref: '/api/role?name=System-Admin'

default_tenant_ref: '/api/tenant?name=admin'
full_name: testuser
username: testuser
password: AviNetworks123

when: user_exists.obj.count < 1

As you can see because idempotency isn’t default, when using avi_api_session we created a check to see if the
user already exists, and if the user doesn’t exist we run the next task which creates the user.

5.2 Modules index

At Avi we understand how important automation is, and in the Ansible world modules are used to give power to your
playbooks. With our modules you can easily communicate with the Avi REST API’s.

Ansible is an extremely popular tool among operations and network engineers, and allows them to automate many
tasks, which are often repeatable. It can configure systems, network devices, handle orchestration, and launch con-
tinuous deployments. It’s goal is ease of use, and minimum amount of moving parts. It uses OpenSSH for transport
instead of proprietary protocols, and communication. It’s agentless, and can be ran from just about any machine (of
course with network access). It’s designed to be used by all types of users. For Ansible there is no need to manage
remote daemons. It’s also decentralized and relies on your existing credentials to gain access to the remote hosts.

We’ve built Ansible Roles that can be used to deploy Ansible in your environment, as well as Ansible Modules that
can be used to manage and control your Avi Vantage deployment. Due to our vast API, our Ansible integration can do
anything our API permits.

5.2. Modules index 29

	Avi Controller Role
	Avi SE Role
	Avi Docker Role
	Avi Network Interfaces Role
	Avi Ansible Modules

